
ar
X

iv
:2

20
6.

11
69

9v
5

 [
cs

.S
D

]
 1

4
M

ay
 2

02
3

The SJTU X-LANCE Lab System for CNSRC 2022

Zhengyang Chen, Bei Liu, Bing Han, Leying Zhang, Yanmin Qian

MoE Key Lab of Artificial Intelligence, AI Institute
X-LANCE Lab, Department of Computer Science and Engineering

Shanghai Jiao Tong University, Shanghai, China
{zhengyang.chen, beiliu, hanbing97, zhangleying, yanminqian}@sjtu.edu.cn

Abstract

This technical report describes the SJTU X-LANCE Lab

system for the three tracks in CNSRC 2022. In this chal-

lenge, we explored the speaker embedding modeling ability

of deep ResNet (Deeper r-vector). All the systems are only

trained on the Cnceleb training set and we use the same sys-

tems for the three tracks in CNSRC 2022. In this chal-

lenge, our system ranks the first place in the fixed track of

speaker verification task. Our best single system and fusion

system achieve 0.3164 and 0.2975 minDCF respectively. Be-

sides, we submit the result of ResNet221 to the speaker re-

trieval track and achieve 0.4626 mAP. More importantly, we

have helped the wespeaker [1] toolkit reproduce our result:

https://github.com/wenet-e2e/wespeaker.

1. Data Usage

For all three tracks in the CNSRC 2022, we follow the same

data usage setup. 797 speakers from CN-Celeb1 dev [2] and

1996 speaker from CN-Celeb2 [3] are used as the training data.

1.1. Data Processing

As shown in [3], there are many short utterances less than 2s

in CN-Celeb dataset. In our experiment, we first concatenate

the short utterances from the same genre and same speaker to

make them longer than 5s. It should be noted that we only do

this operation on the training set. After doing this operation, the

training utterance number is reduced from 632,740 to 508,228.

1.2. Data Augmentation

In our experiments, three different augmentations are applied:

• Additive Noise: We use the audios from MUSAN [4] as

the additive noise in our experiment to do data augmen-

tation.

• Reverberation: The impulse response from RIR1 is used

to do reverberation data augmentation.

• Speed Perturbation: We randomly speech up or slow

down an utterance with ratio 1.1 and 0.9 to do speed

perturbation. The utterance with a new speed will be

considered from a new speaker [5, 6, 7].

We do all the data augmentations online. For each utterance

in the training process, we independently decide whether to do

each data augmentation with a probability 0.6.

1https://www.openslr.org/28/

1.3. Acoustic Feature Extraction and Processing

In our experiment, we extract the 80-dimensional fbank feature

for each utterance and then do the utterance-wise mean nor-

malization along the time dimension. We did not apply voice

activity detection (VAD) in our experiment.

2. System Architecture

2.1. Revisiting r-vector

r-vector is introduced in [8] and is the winning system of

VoxSRC 2019 [9]. Although different ResNet variants [10, 11,

12] are proposed for the speaker embedding learning task, they

differ in various aspects such as the convolutional type (1D

v.s.2D), network width, kernel size, pooling methods, etc. In

our experiences, we found the r-vector [8, 13] is the most sta-

ble one considering of the performance and scalability. The 34-

layer r-vector architecture used in this work is shown in Table 1,

which is nearly the same as the original r-vector, while we use

80 dimensional Fbank instead of the 40 dimensional one. The

ResNet backbone is used to transform the fbank feature into

deep feature representations. Then, statistic pooling [14] is used

to map the variable-length feature sequence to fix-dimensional

representation.

Table 1: Model architecture for ResNet in r-vector

Layer name Structure Output

Input – 80 × Frame Num × 1
Conv2D-1 3 × 3, Stride 1 80 × Frame Num × 32

ResNetBlock-1

[

3× 3, 32
3× 3, 32

]

× 3 , Stride 1 80 × Frame Num × 32

ResNetBlock-2

[

3× 3, 64
3× 3, 64

]

× 4, Stride 2 40 × Frame Num//2 × 64

ResNetBlock-3

[

3× 3, 128
3× 3, 128

]

× 6, Stride 2 20× Frame Num//4× 128

ResNetBlock-4

[

3× 3, 256
3× 3, 256

]

× 3, Stride 2 10× Frame Num//8× 256

StatsPooling – 20 × 256
Flatten – 5120

Emb Layer – 256

2.2. Make r-vector deeper

It has been shown in [15] that impressive improvement can be

achieved via deepening the speaker embedding learner, to make

the r-vector more powerful, we extend it to a deeper version.

The general configuration for these “deeper r-vector” is shown

in Table 2.

We can change parameters (N1, N2, N3, N4) in Table 2 to

get deep ResNet with different layers and we list the configu-

http://arxiv.org/abs/2206.11699v5
https://github.com/wenet-e2e/wespeaker/tree/master/examples/cnceleb/v2
https://www.openslr.org/28/

ration for the deep ResNet used in our experiment in Table 3.

Besides, we also use the DF-ResNet in [15] and make it deeper

to 287 layers.

Table 2: Model architecture for deep ResNet.

Layer name Structure Output

Input − 80× Frame Num × 1
Conv2D-1 3× 3, Stride 1 80 × Frame Num × 32

ResNetBlock-1





1× 1, 32
3× 3, 32
1× 1, 128



×N1, Stride 1 80× Frame Num × 128

ResNetBlock-2





1× 1, 64
3× 3, 64
1× 1, 256



×N2, Stride 2 40× Frame Num//2× 256

ResNetBlock-3





1× 1, 128
3× 3, 128
1× 1, 512



×N3, Stride 2 20× Frame Num//4× 512

ResNetBlock-4





1× 1, 256
3× 3, 256
1× 1, 1024



×N4, Stride 2 10× Frame Num//8 × 1024

StatisticPooling − 20× 1024
Flatten − 20480

Emb Layer − 256

Table 3: Configuration for different deep ResNet.

Deep ResNet Name (N1, N2, N3, N4)
ResNet152 (3, 8, 36, 3)
ResNet221 (6, 16, 48, 3)
ResNet293 (10, 20, 64, 3)

3. System Training

In our experiment, we split the training process into two stages.

In the first stage, we do the general classification training. In the

second stage, we do the large margin finetuning, which is first

proposed in [16]. At each stage, SGD is used as the optimizer to

update our models. The learning rate is exponentially decreased

from an initial value to a final value.

3.1. Stage I

In stage I, we use the additive angular margin (AAM) [17, 18]

loss as the training objective. As mentioned in section 1.2, af-

ter applying speed perturbation, the speaker number is changed

from 2793 to 8379. The scale and margin in the AAM loss

are set to 32 and 0.2 respectively. We trained all the systems for

165 epochs. In each epoch, we go through the whole training set

and randomly sample 2s segment from each utterance to build

the training batch. In this stage, the initial value and final value

of the learning rate are set to 0.1 and 0.00005 respectively.

3.2. Stage II: Large Margin Finetuning

In stage II, we do the large margin finetuning [16] based on the

model from stage I. In this stage, we abandon the speed per-

turbation augmentation and the speaker classification number is

2793. All the systems are trained for another 5 epochs. Besides,

we randomly sampled 6s segments from each utterance to con-

struct a training batch and change the margin in AAM to 0.5.

In this stage, the initial value and final value of the learning rate

are set to 0.0001 and 0.000025 respectively.

4. System Scoring

4.1. Scoring for Speaker Verification

In our experiment, we use cosine similarity as the scoring

method. Besides, we also add the adaptive score normaliza-

tion [19] and we set the imposter cohort size to 600. The im-

poster cohort is estimated from the training set by average the

embeddings for each training speaker. In the cnceleb evaluation

trial, there are multiple utterances for each enrollment speaker.

We tried three different ways to leverage the multiple utterances

during the scoring for each trial pair.

Utt-Concat: In this strategy, we concatenate multiple utter-

ances, which belong to the same enrollment speaker, to one long

enrollment utterance. Then, we can directly get the score be-

tween enrollment utterance and test utterance using the scoring

method mentioned above.

Emb-Avg: In this strategy, we first extract the speaker embed-

ding for each utterance. Then, we average the embeddings be-

longing to the same enrollment speaker to get enrollment em-

bedding.

Score-Avg: In this strategy, for each utterance from the same

enrollment speaker, we compute its score with the test utterance.

Then, the scores are averaged to be used as the score between

the enrollment speaker and the test utterance.

4.2. Scoring for Speaker Retrieval

In the speaker retrieval task, we score each enrollment utterance

against all the utterances in the large data pool. The scoring

method is the same as the method used in the speaker verifi-

cation task. Then, the utterances in the data pool with top 10

scores are considered as the retrieval results.

5. Results

5.1. Speaker Verification

5.1.1. Results comparison between different scoring strategies.

In this section, we will compare different ways to score the

speaker verification system. The corresponding results are

listed in Table 4. The results show that applying asnorm after

cosine scoring can consistently bring further improvement. Ac-

tually, we also did the score calibration [16] in our experiment.

However, the score calibration can only improve the EER but

degrade the minDCF and we abandon it finally. Besides, we

also compare the different ways to leverage the multiple utter-

ances belonging to one enrollment speaker and we have given

a detailed description of these methods in section 4.1. From

the results, we find the Emb-Avg achieves the best result on the

Cnceleb evaluation trial. The asnorm and Emb-Avg are applied

to all the systems in the following sections.

Table 4: Results comparison between different scoring

methods and different strategies to combine multiple utter-

ances within one enrollment speaker. The results are from the

ResNet34 model after stage I training.

Scoring Method Enroll Comb minDCF (0.01) EER (%)

Cosine Utt-Concat 0.4391 7.305

Cosine Emb-Avg 0.4004 6.922

Cosine + ASnorm Utt-Concat 0.4035 7.085

Cosine + ASnorm Emb-Avg 0.3707 6.590

Cosine + ASnorm Score-Avg 0.4419 6.759

Table 5: Results for different systems. The FNR and FPR denotes the false negative rate and false positive rate. We get the FNR and

FPR by setting the score threshold to the same threshold when we get the minDCF (0.01). LM denotes the large margin finetuning.

System Params # minDCF (0.01) EER (%) FNR (%) FPR (%)

ResNet34 ∗ 6.63M 0.3958 7.981 35.29 0.043

ResNet34 6.63M 0.3707 6.590 31.73 0.054

ResNet152 19.8M 0.3386 5.762 29.34 0.045

ResNet221 23.8M 0.3270 5.543 28.08 0.046

ResNet293 28.6M 0.3202 5.553 27.92 0.041

DF-ResNet 14.8M 0.3361 6.279 28.83 0.048

ResNet34 + LM 6.63M 0.3543 6.221 30.06 0.054

ResNet152 + LM 19.8M 0.3251 5.452 28.66 0.039

ResNet221 + LM 23.8M 0.3179 5.284 28.27 0.035

ResNet293 + LM 28.6M 0.3164 5.227 27.82 0.038

DF-ResNet + LM 14.8M 0.3185 6.117 27.46 0.044

Fusion - 0.2975 4.911 25.28 0.045

We didn’t apply speed perturbation on ResNet34 ∗ as a comparison.

5.1.2. Results for different systems

Here, we listed results for all the systems in Table 5. As we ex-

pected, the deep ResNet has a strong modeling ability and can

avoid overfitting problem at the same time. For the submission

of the speaker verification task, we fuse all the systems with

large margin finetuning based on their performance. Besides,

we also list the false negative rate (FNR) and false positive rate

(FPR) in Table 5. We get these two values by setting the score

threshold to the same threshold value when we get minDCF

(0.01). The results in Table 5 show that the minDCF is posi-

tively correlated with FNR and we can interpret the minDCF

(0.01) as how the system performs on FNR in the case of very

low FPR.

5.2. Speaker Retrieval

For the retrieval, we use the ResNet221+LM system in Table 5

to score each enrollment utterance against all the test utterances.

Then we get the results with top 10 scores following the strategy

described in section 4.2.

6. References

[1] Hongji Wang, Chengdong Liang, Shuai Wang, Zhengyang

Chen, Binbin Zhang, Xu Xiang, Yanlei Deng, and Yanmin

Qian, “Wespeaker: A research and production oriented

speaker embedding learning toolkit,” in ICASSP 2023-

2023 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[2] Yue Fan, JW Kang, LT Li, KC Li, HL Chen, ST Cheng,

PY Zhang, ZY Zhou, YQ Cai, and Dong Wang, “CN-

Celeb: a challenging chinese speaker recognition dataset,”

in ICASSP 2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2020, pp. 7604–7608.

[3] Lantian Li, Ruiqi Liu, Jiawen Kang, Yue Fan, Hao Cui,

Yunqi Cai, Ravichander Vipperla, Thomas Fang Zheng,

and Dong Wang, “CN-Celeb: multi-genre speaker recog-

nition,” Speech Communication, 2022.

[4] David Snyder, Guoguo Chen, and Daniel Povey, “MU-

SAN: A Music, Speech, and Noise Corpus,” 2015,

arXiv:1510.08484v1.

[5] Hitoshi Yamamoto, Kong Aik Lee, Koji Okabe, and Taka-

fumi Koshinaka, “Speaker augmentation and bandwidth

extension for deep speaker embedding.,” in Interspeech,

2019, pp. 406–410.

[6] Weiqing Wang, Danwei Cai, Xiaoyi Qin, and Ming Li,

“The dku-dukeece systems for voxceleb speaker recogni-

tion challenge 2020,” arXiv preprint arXiv:2010.12731,

2020.

[7] Miao Zhao, Yufeng Ma, Min Liu, and Minqiang Xu, “The

speakin system for voxceleb speaker recognition chal-

lange 2021,” arXiv preprint arXiv:2109.01989, 2021.

[8] Hossein Zeinali, Shuai Wang, Anna Silnova, Pavel

Matějka, and Oldřich Plchot, “But system description

to voxceleb speaker recognition challenge 2019,” arXiv

preprint arXiv:1910.12592, 2019.

[9] Joon Son Chung, Arsha Nagrani, Ernesto Coto, Weidi

Xie, Mitchell McLaren, Douglas A Reynolds, and

Andrew Zisserman, “Voxsrc 2019: The first vox-

celeb speaker recognition challenge,” arXiv preprint

arXiv:1912.02522, 2019.

[10] Weidi Xie, Arsha Nagrani, Joon Son Chung, and An-

drew Zisserman, “Utterance-level aggregation for speaker

recognition in the wild,” in ICASSP 2019-2019 IEEE In-

ternational Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2019, pp. 5791–5795.

[11] Weicheng Cai, Jinkun Chen, and Ming Li, “Explor-

ing the encoding layer and loss function in end-to-end

speaker and language recognition system,” arXiv preprint

arXiv:1804.05160, 2018.

[12] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman,

“Voxceleb2: Deep speaker recognition,” arXiv preprint

arXiv:1806.05622, 2018.

[13] Shuai Wang, Yexin Yang, Zhanghao Wu, Yanmin Qian,

and Kai Yu, “Data augmentation using deep genera-

tive models for embedding based speaker recognition,”

IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 28, pp. 2598–2609, 2020.

[14] David Snyder, Daniel Garcia-Romero, Daniel Povey, and

Sanjeev Khudanpur, “Deep neural network embeddings

for text-independent speaker verification.,” in Interspeech,

2017, pp. 999–1003.

[15] Bei Liu, Zhengyang Chen, Shuai Wang, Haoyu Wang,

Bing Han, and Yanmin Qian, “DF-ResNet: Boosting

Speaker Verification Performance with Depth-First De-

sign,” in Proc. Interspeech 2022, 2022, pp. 296–300.

[16] Jenthe Thienpondt, Brecht Desplanques, and Kris De-

muynck, “The idlab voxceleb speaker recognition

challenge 2020 system description,” arXiv preprint

arXiv:2010.12468, 2020.

[17] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos

Zafeiriou, “Arcface: Additive angular margin loss for

deep face recognition,” in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition,

2019, pp. 4690–4699.

[18] Xu Xiang, Shuai Wang, Houjun Huang, Yanmin Qian,

and Kai Yu, “Margin matters: Towards more discrimina-

tive deep neural network embeddings for speaker recog-

nition,” in 2019 Asia-Pacific Signal and Information Pro-

cessing Association Annual Summit and Conference (AP-

SIPA ASC). IEEE, 2019, pp. 1652–1656.

[19] Sandro Cumani, Pier Domenico Batzu, Daniele Colibro,

Claudio Vair, Pietro Laface, and Vasileios Vasilakakis,

“Comparison of speaker recognition approaches for real

applications,” in Twelfth annual conference of the inter-

national speech communication association, 2011.

	1 Data Usage
	1.1 Data Processing
	1.2 Data Augmentation
	1.3 Acoustic Feature Extraction and Processing

	2 System Architecture
	2.1 Revisiting r-vector
	2.2 Make r-vector deeper

	3 System Training
	3.1 Stage I
	3.2 Stage II: Large Margin Finetuning

	4 System Scoring
	4.1 Scoring for Speaker Verification
	4.2 Scoring for Speaker Retrieval

	5 Results
	5.1 Speaker Verification
	5.1.1 Results comparison between different scoring strategies.
	5.1.2 Results for different systems

	5.2 Speaker Retrieval

	6 References

