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ABSTRACT

Diffusion models have gained attention in speech enhancement
tasks, providing an alternative to conventional discriminative meth-
ods. However, research on target speech extraction under multi-
speaker noisy conditions remains relatively unexplored. More-
over, the superior quality of diffusion methods typically comes at
the cost of slower inference speed. In this paper, we introduce
the Discriminative Diffusion model for Target Speech Extraction
(DDTSE). We apply the same forward process as diffusion models
and utilize the reconstruction loss similar to discriminative methods.
Furthermore, we devise a two-stage training strategy to emulate the
inference process during model training. DDTSE not only works as
a standalone system, but also can further improve the performance of
discriminative models without additional retraining. Experimental
results demonstrate that DDTSE not only achieves higher percep-
tual quality but also accelerates the inference process by 3 times
compared to the conventional diffusion model.

Index Terms— target speech extraction, speech enhancement,
diffusion model, discriminative model

1. INTRODUCTION

The cocktail party effect, also known as “selective hearing”, is the
ability to focus on a single speaker or conversation in a noisy envi-
ronment [1, 2, 3]. Target Speech Extraction (TSE) aims to emulate
human capability by isolating the clean speech of the target speaker
from a noisy mixture. It serves as a valuable tool for enhancing
downstream tasks like speech recognition and speaker verification,
attracting significant research interests [4, 5, 6].

Discriminative and generative models are two different ap-
proaches for speech enhancement and target speech extraction tasks.
The former learns the best mapping between inputs and outputs,
while the latter learns the target distribution, allowing multiple valid
estimates [7]. TSE primarily relies on discriminative methods such
as DPCCN [8], SpEX [9] and Speakerbeam [10]. Despite the many
advances gained from past research, discriminative methods occa-
sionally show limited generalization abilities towards unseen noise
types or speakers [11, 12].

Generative methods, particularly diffusion methods, have shown
potential in producing natural and diverse speech, thereby attracting
significant interest [13, 14, 15]. Previous work, such as SGMSE+
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and DiffTSE [7, 12, 16, 17], has applied score-based diffusion mod-
els on speech enhancement and target speech extraction. However,
the discrepancy between the forward and reverse processes of diffu-
sion models might lead to degradation of model performance [18].
Moreover, there are few explorations for the target speech extraction
task in multi-speaker noisy environments with generative models.
Furthermore, enhancing inference efficiency remains a challenge for
real-world deployment, due to the need for dozens or even hundreds
of inference steps of diffusion models.

In this study, we introduce the Discriminative Diffusion Model
for Target Speech Extraction (DDTSE), which combines the for-
ward processes of the diffusion model and the training objective used
in the discriminative model. We design a two-stage training method
and provide two usage modes. Our extensive experiments reveal that
DDTSE surpasses discriminative methods in perceptual quality, par-
ticularly in noisy conditions. Furthermore, when integrated with ex-
isting models, denoted as X+DDTSE, it consistently surpasses stan-
dalone discriminative models (i.e., X) and demonstrates potential as
an effective plug-in enhancement. In terms of inference efficiency,
DDTSE requires only 10 steps for standalone use and 2 steps for
X+DDTSE, respectively. The main contributions of the paper can
be summarized as follows:

1) We introduce DDTSE, an advanced frequency domain TSE
model, utilizing the forward process of the diffusion model and the
reconstruction objective of the discriminative model. It is not only
applicable in multi- and single-speaker scenarios but also effective
in processing environmental noise.

2) We design a two-stage training process. It learns to extract
the clean speech given to the target speaker embedding in the first
stage and aims to bridge the gap between training and inference in
the second stage.

3) We provide two usage modes for versatility. DDTSE-only
operates as a standalone system for end-to-end TSE, and X+DDTSE
rectifies existing discriminative models to enhance overall system
performance. Audio samples1are available.

2. RELATED WORK

2.1. Discriminative models

For an extended period, discriminative methods have been the pre-
ferred approach for tasks related to speech enhancement and target
speech extraction, such as DPCCN [8] and Speakerbeam [10]. These
approaches mainly utilize supervised learning to learn an optimized

1https://vivian556123.github.io/slt2024-ddtse/



deterministic mapping between corrupted speech y and the corre-
sponding clean speech target x as in Fig.1c. However, these models
may result in unpleasant speech distortions and limit generalization
abilities towards unseen noise types or speakers [11].

2.2. Diffusion models

Recently, there are various diffusion models, especially score-based
diffusion models, designed for speech enhancement and target
speech extraction tasks [7, 12, 15, 16, 17, 19, 20]. The forward
process is defined through a linear stochastic differential equation
(SDE) and gradually turns data into noise. The reverse process is
to sample a target data point from Gaussian noise and invert this
process with a reverse-time SDE. The forward and reverse process
of score-based diffusion methods is shown in Fig.1a and b.

As introduced in [12, 20], the forward process is modeled as
the solution to an SDE as in Eq.1, where y is the spectrogram of
corrupted speech, x0 is the spectrogram of target clean speech, xt

is the state of the process at time t ∈ [0, T ], f and g are drift and
diffusion coefficient function parameterized by γ, σmax, σmin. w is
the standard Wiener process.

dxt = γ (y − xt)︸ ︷︷ ︸
f(xt,y)

dt+

[
σmin

(
σmax
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)t
√

2 log

(
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)]
︸ ︷︷ ︸

g(t)

dw

(1)
Eq.1 describes a Gaussian process, the mean and variance of
xtt∈[0,T ] can be derived as in Eq.2 and 3, when its initial con-
ditions are known [21]. The solution for xt, called perturbation
kernel, is shown in Eq.4. In practice, we sample each xt through
Eq.5, and the random noise is z ∼ N (0, I).

µ(x0,y, t) = exp−γt x0 + (1− exp−γt)y (2)

σ(t)2 =
σ2
min

(
(σmax/σmin)

2t − exp−2γt
)
log (σmax/σmin)

γ + log (σmax/σmin)
(3)

q(xt|x0,y) = N (xt;µ(x0,y, t), σ(t)
2) (4)

xt = µ(x0,y, t) + σ(t)z (5)

For each SDE in the form of Eq.1, the corresponding reverse-time
SDE is defined by Eq.6, where dt is a negative timestep in the re-
verse process [22]. We can train a neural network to approximate
∇xt log pt(xt|y), which is the score of the perturbation kernel. Ac-
cording to [23, 24], the loss function takes the form in Eq.8.

dxt =
[
f (xt,y)− g(t)2∇xt log pt(xt|y)

]
dt+ g(t)dw (6)

dxt ≈
[
f (xt,y)− g(t)2sθ (xt,y, t)

]
dt+ g(t)dw (7)

min
θ

E(x0,xt)∼q(x0)q(xt|x0,y),s,t

[∥∥∥∥sθ (xt,y, t) +
z

σ(t)

∥∥∥∥2

2

]
(8)

These diffusion methods can generate natural speech, however, as
shown in Fig.1a and b, there exists a discrepancy between the termi-
nating distribution of the forward process (the distribution of pT for
x) and the prior used for solving the reverse process at inference (the
distribution of p(y)) [18]. This is mainly because of the exponen-
tial characteristic of Eq.2 that xT = µ(x0,y, T ) ̸= y. Moreover,
diffusion models require many inference steps to achieve good per-
formance, and thus impose computational pressure.
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Fig. 1. Comparison of score-based diffusion model, discriminative
model and our proposed model. The x-axis represents the timestep.
(a) and (b) are the forward and reverse process of score-based dif-
fusion model [11, 12]. (c) is the inference process of discriminative
method with one-step prediction. (d) is the inference process of our
proposed DDTSE-only mode. The solid gray line is the model pre-
diction in each step. The dashed gray line and the dotted circles are
the results obtained by adding noise according to Eq.2 and 3.

2.3. Combination of discriminative and diffusion models

Given that diffusion and discriminative models each possess advan-
tages and disadvantages, some researchers focus on combining them.
At the architectural level, StoRM [11] and Diffiner [25] leverage pre-
processed speech to guide diffusion-based model training. [26] uti-
lizes generative and discriminative decoders and fuses them. How-
ever, they usually require fine-tuning or joint training, and cannot be
used as plug-and-play models. At the objective level, WGSL [27]
augments the original diffusion training objective with an L2 recon-
struction loss at each diffusion time-step. To minimize the discrep-
ancy and accelerate the inference process, [28] proposed a two-stage
diffusion training method through BBED SDE [18]. In the first
stage, it uses the generative denoising score matching loss, and in
the second training stage it applies the predictive loss.

Inspired by these approaches, we propose DDTSE, which com-
bines the forward process of the diffusion model and the training
objective of the discriminative model. It not only improves the per-
ceptual speech quality of discriminative models, but also achieves 3x
speedup compared to the diffusion model for inference. It is applica-
ble for both noisy and clean multi-speaker or single-speaker speech
enhancement and target speech extraction. Two inference modes en-
able DDTSE to be utilized independently or in a rectified manner
combined with other discriminative models, thereby offering a com-
prehensive solution for various scenarios.

3. METHODOLOGY

3.1. Training Method

The objective of TSE is to isolate the target speaker’s clean speech
from a mixture of multiple speakers and ambient noise. Our model
processes the mixture y to retrieve the clean speech x0. We collect
an enrollment speech from the target speaker to extract the speaker



embedding s for model conditioning.
Our model consists of two processes: the forward process and

the reverse process. The forward process q(xt|x0,y) is the same as
the score-based diffusion model [12], as shown in Fig.1a, defined in
Eq.4. It gradually turns the clean speech x0 into the noisy mixture
to simulate speech corruption with timestep t ∈ [0, T ]. The reverse
process is similar to the discriminative method as shown in Fig.1c,
but it transforms speech with Gaussian noise xt back to clean speech
over timesteps, conditioned on the speaker embedding s.

Although prior works mainly focus on predicting the score func-
tion during reverse process [12, 17], the score-based objective does
not properly measure the perceptual quality of the estimated clean
speech because it resembles the generative loss typically utilized
in unconditional diffusion models rather than supervised speech en-
hancement tasks [27]. To address this problem, we train the model
fθ to predict the clean speech x0, conditioned on the speaker em-
bedding s by minimizing the conditional expectation as in Eq.9:

min
θ

E(x0,xt)∼q(x0)q(xt|x0,y),s,t

[
∥x0 − fθ(xt, s, t)∥22

]
(9)

In order to minimize the discrepancy caused by the exponential de-
cay in the forward process, with this training objective, we divide
the training process into two stages.

3.1.1. First training stage

The first stage enables DDTSE to progressively learn to extract the
target speech from the conditioned target speaker embedding. Algo-
rithm 1 shows that at each step of this stage, xt is obtained through
the forward process defined in Eq.4, and then the model predicts
clean speech x̂0t. We denote x̂0t as the predicted clean speech at
the tth timestep. µ, σ are defined in Eq.2 and Eq.3, respectively.
We incorporate λ(t) > 0 to control the weight of loss at different
timesteps [29, 30]. d measures L2 distance.

3.1.2. Second training stage

Similar to conventional diffusion models [18], when comparing the
first training stage (Algorithm 1) with the inference process (Algo-
rithm 3, to be explained later), we observe two key differences. The
first is the discrepancy between the terminating distribution of the
forward process, which is pT shown in Fig.1a, and the prior used
for inference, which is the distribution of p(y) in Fig.1d. Secondly,
as indicated in blue, the substitution of the real value x0 with the
predicted version x̂0t+1 also causes mismatch.

Hence, we design the second training stage, shown in Algo-
rithm 2, to imitate the inference process during training. This stage
incorporates three strategies. Strategy A simulates the first step pre-
diction from xT = N (y, σ(t)2) to x̂0T , which ameliorates the first
discrepancy. Strategy B further emulates the second step prediction,
as described in Algorithm 3, making our model not only rely on real
but also on predicted values at each reverse step. The probabilities,
p1 and p2, of employing these two strategies are increased linearly
with the progression of training epochs, as defined by Eq.10. Strat-
egy C maintains consistency with the first training stage but gradu-
ally reduces its probability of sampling.

p1 = p2 = min(0.45,
current training epoch

100
) (10)

3.2. Inference Method

We hope that our model can not only independently realize the TSE
task but also enhance the speech quality beyond the existing TSE
model, so we propose two usage modes for inference.

Algorithm 1 First Training Stage
1: repeat
2: Sample x0,y, t ∼ U [0, 1], z ∼ N (0, I)
3: Update xt ← µ(x0,y, t) + σ(t)2z

4: Update x̂0t ← fθ (xt, s, t) , λ(t)←
(
et − 1

)−1

5: Take gradient descent step on∇θ(λ(t)d(x̂0t,x0))
6: until converged

Algorithm 2 Second Training Stage
1: repeat
2: Sample x0,y, t ∼ U [0, 1], z ∼ N (0, I), p ∼ U [0, 1]
3: if p < p1 then
4: # Strategy A
5: Sample xt ∼ N (y, σ(t)2)

6: Update x̂0t ← fθ (xt, s, t), λ(t)←
(
et − 1

)−1

7: else if p1 ≤ p < p1 + p2 then
8: # Strategy B
9: Sample xt ∼ N (y, σ(t)2)

10: Update x̂0
′
t ← fθ (xt, s, t) , x′

t ← µ(x̂0
′
t,y, t) + σ(t)2z

11: Update x̂0t ← fθ (x
′
t, s, t), λ(t)←

(
et − 1

)−1

12: else
13: # Strategy C
14: Update xt ← µ(x0,y, t) + σ(t)2z

15: Update x̂0t ← fθ (xt, s, t) , λ(t)←
(
et − 1

)−1

16: end if
17: Take gradient descent step on∇θ(λ(t)d(x̂0t,x0))
18: until converged

3.2.1. DDTSE-only

This mode functions as an end-to-end TSE model, delivering high-
quality TSE independently. It combines the one-step prediction of
the discriminative model and the randomness of the diffusion model.
The inference usage mode of DDTSE-only is illustrated in Algo-
rithm 3 and Figure 1d.

We start by sampling xT from a normal distribution centered
on y, and predict target sample x̂0T . The first step is similar to the
one-step generation of discriminative method, and will give a coarse
prediction of the clean speech. We believe that this prediction is
close to the target clean speech, but it is missing in detail.

In order to continue rectifying this coarse prediction, similar to
training, we introduce the forward process of the diffusion model
into the DDTSE inference stage and let the model predict a more ac-
curate target speech than the previous step. At each step, we perform
the forward process to add random noise to the prediction results of
the previous step x̂0t+1 conditioned on y. This simulated forward
process and the sample after adding noise xt are indicated by dashed
gray lines and dotted circles in Figure 1d. Then we predict the clean
target sample x̂0t from the sample with noise xt, as shown in the
solid gray lines. This procedure repeats T times. Finally, the clean
speech is obtained by performing iSTFT on x̂00.

3.2.2. X+DDTSE

Based on an existing discriminative TSE model (denoted as X),
X+DDTSE can achieve higher system performance and speech
quality by rectifying the discriminative model’s output xdis. Unlike
DDTSE-only mode, X+DDTSE substitutes the first step predic-
tion x̂0T in Algorithm 3 with xdis in Algorithm 4 and conducts
the final N steps. Since the X’s prediction is quite accurate, the



Algorithm 3 Inference for DDTSE-only

1: Sample xT ∼ N (y, σ(T )2)
2: Update x̂0T = fθ (xT , s, T )
3: for t = T − 1, ..., 0 do
4: Sample z ∼ N (0, I)
5: Update xt ← µ(x̂0t+1,y, t) + σ(t)2z
6: Update x̂0t ← fθ (xt, s, t)
7: end for
8: return iSTFT(x̂00)

Fig. 2. The overall architecture of DDTSE. Left: The model archi-
tecture. Right: The (up/down sample) residual block in this model.

hyper-parameter N is set to a small number, with the corresponding
timesteps t close to 0, in order to avoid introducing much interfer-
ence in Eq.2. Due to the few steps required, X+DDTSE serves as an
efficient speech quality optimizer that can be applied to various dis-
criminative models. Moreover, different from previous work [11],
X+DDTSE mode can be directly applied without any fine-tuning for
model X, and the required inference steps is reduced from 50 to 2.

Algorithm 4 Inference for X+DDTSE
1: x̂0T−N+1 = xdis

2: for t = T −N, ..., 0 do
3: Sample z ∼ N (0, I)
4: Update xt ← µ(x̂0t+1,y, t) + σ(t)2z
5: Update x̂0t ← fθ (xt, s, t)
6: end for
7: return iSTFT(x̂00)

3.2.3. Inference with ensemble

We repeat the inference process ten times with different random
seeds to get various speech signals, and then sum and normalize
to get the final waveform, similar to DiffTSE [17]. This strategy
leverages randomness and diversity, leading to a more accurate final
waveform, as averaging these outputs can reduce anomalies.

3.3. Model architecture

Fig.2 depicts the simplified DDTSE model architecture denoted as
fθ in previous sections. It uses a modified NCSN++ network [23]
as the backbone, with modified blocks indicated in purple. The
model takes speech STFT spectrogram xt and a speaker embedding

Table 1. Experimental setup for baselines and our model in stan-
dalone usage mode. We abbreviate score estimation loss as S, and
clean speech reconstruction loss as R.

Scenario Model Objective Noise Steps

Multi
Speaker
Baseline

NCSN++ [23] R No 1
DPCCN [8] R No 1

DiffTSE [17] S Yes 30
DiffSep [33]+SV[34] S Yes 30

Single
Speaker
Baseline

DCCRN [35] R No 1
SGMSE+ [7] S Yes 30
WGSL [27] S+R Yes 30

Ours DDTSE R Yes 10

s extracted from a pre-trained speaker verification model as input.
The model operates on both real and imaginary parts of the complex
spectrogram. We utilize the SiLU activation function [31]. We mod-
ify its residual block, incorporating the FiLM mechanism of a single
linear layer to perceive the target speaker embedding s [32]. We also
concatenate s with the hidden feature within the U-Net, positioned
before the self-attention layer to enhance the feature fusion ability.

4. EXPERIMENTAL SETUP

Data: We train and evaluate our system on Libri2Mix 16kHz
dataset2 [36], which is derived from LibriSpeech signals [37] and
WHAM noise [38]. The train-360 set is used for training, with
mix both subset to train multi-speaker model, and mix single
subset to train single-speaker model. For evaluation, the multi-
speaker noisy, multi-speaker clean, single-speaker clean scenarios
are mix both, mix clean and mix single test set respec-
tively. The enrollment speech during inference is another speech
of the target speaker differing from the target speech. All data are
transformed into STFT representation with coefficients in [7].

Baselines: Table 1 illustrates the model configuration of our
proposed DDTSE and the baseline models. In the multi-speaker
scenario, we benchmark DDTSE against four baselines: NCSN++,
DPCCN, DiffTSE and DiffSep+SV. We train a discriminative model
NCSN++ [23], applying the same architecture as DDTSE. We re-
produce DPCCN3 [8], a widely used discriminative TSE model. We
reproduce DiffSep4 [33], a score-based speech separation model,
and cascade a speaker verification model [34] after DiffSep for TSE.
DiffTSE is a score-based diffusion model for TSE, but it is not ac-
cessible for independent reproduction. Our comparative analysis is
based on the results reported in the original paper [17]. In single
speaker scenario, we benchmark against four reproduced baselines:
NCSN++, DCCRN5 [35] , SGMSE+6 [7], WGSL [27]. DCCRN is
a conventional discriminative method, while the latter two are the
latest score-based diffusion methods for speech enhancement. We
re-implement WGSL by ourselves. All the speaker embedding ex-
tractor mentioned in this paper is a ResNet34 speaker verification
model pre-trained on VoxCeleb27 [34]. The main distinction be-

2https://github.com/JorisCos/LibriMix
3https://github.com/jyhan03/dpccn
4https://github.com/fakufaku/diffusion-separation
5https://github.com/asteroid-team/asteroid
6https://github.com/sp-uhh/sgmse
7https://github.com/wenet-e2e/wespeaker



Table 2. Performance comparison in multi-speaker noisy and clean scenarios. DDTSE and NCSN++ have the same model architecture.
All metrics are the higher the better.

Model Multi-Speaker Noisy Scenario Multi-Speaker Clean Scenario
PESQ ESTOI SI-SDR OVRL DNSMOS SIM PESQ ESTOI SI-SDR OVRL DNSMOS SIM

Mixture 1.08 0.40 -2.0 1.63 2.71 0.46 1.15 0.54 0.0 2.65 3.41 0.54

DiffTSE1 / / / / / / / 0.76 9.5 / / /
DiffSep+SV 1.32 0.60 4.8 2.78 3.63 0.62 1.85 0.79 9.6 3.14 3.83 0.83
DDTSE-only 1.60 0.71 7.6 3.28 3.74 0.71 1.79 0.78 9.9 3.30 3.79 0.73

DPCCN 1.74 0.73 9.3 2.93 3.58 0.69 2.22 0.83 13.1 3.05 3.73 0.82
+DDTSE 1.88 0.75 9.7 3.19 3.80 0.76 2.27 0.85 13.3 3.29 3.91 0.82

NCSN++ 1.55 0.73 9.7 3.15 3.68 0.69 2.24 0.86 13.8 3.28 3.86 0.85
+DDTSE 1.75 0.77 10.1 3.24 3.79 0.76 2.32 0.87 13.9 3.32 3.92 0.85

1 Results were reported in [17]

tween diffusion-based baseline models and proposed DDTSE lies
in the training objectives, specifically score-based versus predict-
ing clean data. Compared with discriminative approaches, DDTSE
introduce random noise in both the training and inference stages,
which brings more randomness and improves the perceptual quality
of the generated samples.

Settings: Parameters defining the forward process in Eq. 1 is set
to γ = 1.5, σmin = 0.05, σmax = 0.5. The STFT representation is
processed following [12]. We use Adam optimizer and exponential
moving average with a decay of 0.999. We use 8 NVIDIA TESLA
V100 32GB GPUs for training, with a batch size of 3 samples per
GPU. Each sample has 512 STFT frames. We train the first stage
with a learning rate of 1e-4 for 500 epochs and the second stage
with a learning rate of 5e-5 for 12 epochs. DDTSE-only executes
10 inference steps with linearly decreased timesteps from 1 to 0.
X+DDTSE performs the last 2 steps out of a total of 10. We select
the best-performing model on 20 randomly chosen samples from the
dev-set for evaluation.

Evaluation metrics: We evaluate the model performance with
both intrusive and non-intrusive speech quality metrics, i.e. with or
without clean reference signal [39]. Intrusive metrics include Per-
ceptual Evaluation of Speech Quality (PESQ) [40], Extended Short-
Time Objective Intelligibility (ESTOI) [41], Scale-invariant Signal-
to-Distortion Ratio (SI-SDR) [42]. Non-intrusive metrics, such as
OVRL and DNSMOS [43, 44], are used to assess speech quality
without clean reference. We use a ResNet34 model pre-trained on
VoxCeleb2 to extract speaker embedding for all experiments, and
we calculate the cosine speaker similarity (SIM) between speaker
embedding of the enhanced speech and the target speech [34]. All
metrics are the higher the better.

5. RESULTS AND ANALYSIS

5.1. Performance in multi-speaker scenarios

Table 2 shows the performance of DDTSE against both discrimina-
tive and generative baselines in scenarios involving multiple speak-
ers under both noisy and clean conditions.

In the multi-speaker noisy scenario, DDTSE-only outperforms
DiffSep+SV on all the metrics. It also demonstrates superior per-
formance on the metrics of OVRL and DNSMOS by comparing
with discriminative models, i.e., DPCCN and NCSN++. Notably,
the X+DDTSE mode exhibits the highest performance on all the

Fig. 3. Comparison of DNSMOS distribution between X+DDTSE
and corresponding discriminative model (X) DPCCN and NCSN++
in noisy and clean scenarios. Values are the higher the better.

metrics except OVRL. X+DDTSE also improves speaker similarity
score (SIM), suggesting a more accurate preservation of individual
speaker characteristics during extraction.

In the multi-speaker clean scenario, DDTSE-only surpasses the
score-based DiffTSE on the metrics of ESTOI and SI-SDR. Remark-
ably, DDTSE-only model achieves this by only using a third of the
reverse iteration steps, comparing the step number reported in [17].
This indicates significant enhancements in both signal quality and
efficiency. However, it’s observed that the SIM obtained by the
DDTSE-only model is the lowest among all the TSE models. This
could potentially suggest less discrimination on speaker characteris-
tics when compared to other models, which we will further address
in our subsequent work.

Fig.3 shows the DNSMOS score distributions of various mod-
els. We observe that when combined with DPCCN and NCSN++,
both models exhibit further improvements in non-intrusive speech
quality. Moreover, X+DDTSE mode consistently enhances the per-
formance in both noisy and clean conditions. This suggests that the
DDTSE model has potential as a plugin in speech enhancement and
extraction tasks.

5.2. Performance in single-speaker scenario

Our proposed methods can be generalized to general speech en-
hancement task. In the single-speaker scenario, speech extraction
can be performed without requiring additional enrollment speech.
We directly extract speaker embedding s from noisy speech y. This
is made possible due to the noise robustness of the speaker extrac-



Table 3. Performance comparison for speech enhancement in single
speaker scenario. All metrics are the higher the better.

Model PESQ ESTOI SI-SDR OVRL DNSMOS

Noisy speech 1.16 0.56 3.5 1.75 2.63

NCSN++ 1.85 0.82 12.7 3.11 3.59
SGMSE+ 1.99 0.82 11.1 3.12 3.60
WGSL 1.86 0.79 10.8 3.08 3.50
DDTSE-only 2.03 0.83 12.6 3.33 3.84
DDTSE-only2 2.01 0.82 12.2 3.25 3.75

DCCRN 2.03 0.81 13.3 2.98 3.64
+DDTSE 2.24 0.83 13.7 3.15 3.77
+DDTSE2 2.20 0.83 13.7 3.18 3.80

2 This model is trained on multi-speaker data

tor [34]. The performance comparison in the single-speaker scenario
is presented in Table 3. It indicates that the DDTSE-only model out-
performs all other diffusion and discriminative models on all metrics,
with the exception of SI-SDR. However, SI-SDR is improved to its
highest value when DCCRN is integrated into the X+DDTSE model.
This further highlights the potential of DDTSE in enhancing perfor-
mance when used in conjunction with other models. Furthermore,
the DDTSE model trained on multi-speaker data achieves compara-
ble performance as the model trained on single-speaker data, indi-
cating the generalization and robustness of DDTSE model. We can
also employ enrollment speech, as in multi-speaker scenarios, but
this only results in a marginal performance gain.

5.3. Ablation study

Table 4 provides an analysis of the individual contributions from the
first training stage (T1), the second training stage (T2) and the in-
ference with ensemble strategy (Ensem). These results indicate that
with the same total training epochs, by omitting T2 (S1) worsens
all metrics, highlighting the necessity for the second training stage.
S2 shows that Ensem improves intrusive metrics but slightly reduces
non-intrusive quality, suggesting that averaging speech with diver-
sity may introduce undesired distortion. Only training with T1 or
T2, as shown by S3 and S4, results in a performance decrease on
intrusive metrics. Only training with T2 (S4) also causes speaker
similarity degradation.

Moreover, we experimentally find that T2 cannot be trained for
too many epochs. Strategy A, introduced in Section 3.1.2, provides
one-step coarse prediction of the clean speech at the initial timestep,
but it is not precise in detail. Strategy B integrates this prediction
into diffusion forward process and deduces a more accurate result.
If these strategies are over-presented as training time increases, the
resulting estimation errors will lead to sub-optimal performance [15,
45]. Consequently, we limit the training of the second stage to only
12 epochs, as outlined in Section 4.

5.4. Inference speed

Table 5 presents the Real-Time-Factor (RTF), speech quality, and
speaker similarity of the generated speech across various inference
steps. The RTF= processing time

speech duration is measured on a single V100 and serves
as an efficiency indicator. We notice that the performance improve-
ments of the DDTSE-only along with the increasing number of steps
tend to plateau beyond 10 steps. Furthermore, in the X+DDTSE

Table 4. Ablation Study of DDTSE-only in multi-speaker noisy sce-
nario. T1 and T2 are the first and second training stages. Ensem is the
Inference with ensemble strategy.

# T1 T2 Ensem ESTOI SI-SDR OVRL DNSMOS SIM

S0 ! ! ! 0.71 7.6 3.28 3.74 0.71
S1 ! % ! 0.69 6.8 3.21 3.67 0.70
S2 ! ! % 0.69 6.7 3.34 3.82 0.71
S3 ! % % 0.67 5.7 3.28 3.73 0.70
S4 % ! % 0.66 6.1 3.27 3.79 0.61

Table 5. Comparison with varying inference steps of DDTSE-only
and X+DDTSE modes in multi-speaker noisy scenario.

Model Steps RTF ESTOI SI-SDR OVRL DNSMOS SIM

DDTSE
only

1 0.093 0.45 0.9 2.77 3.09 0.44
5 0.273 0.64 4.9 3.20 3.59 0.66
10 0.501 0.67 5.7 3.28 3.73 0.70
15 0.728 0.68 5.9 3.29 3.78 0.71
20 0.954 0.68 5.9 3.28 3.80 0.71
30 1.415 0.67 5.6 3.24 3.81 0.71

X+
DDTSE

1 0.093 0.73 9.4 3.01 3.65 0.71
2 0.139 0.75 9.4 3.18 3.81 0.76
3 0.183 0.75 9.4 3.26 3.84 0.76
4 0.234 0.76 9.2 3.29 3.83 0.75

mode, where X means DPCCN, we can achieve robust performance
from as few as 2 steps, showcasing rapid processing without sac-
rificing quality and further eliminating the constraints of slow pro-
cessing speeds of diffusion models. Utilizing our proposed DDTSE
inference algorithm, we achieve significant reductions in the number
of inference steps. According to the steps reported in [12] and [11],
our approaches decrease the steps from 30 to 10 for the DDTSE-only
mode, and from 50 to 2 for the X+DDTSE mode, respectively.

6. CONCLUSION

We present DDTSE, which combines discriminative training objec-
tive and diffusion forward process, designed for target speech extrac-
tion and enhancement in multi-speaker and single-speaker scenarios
under both noisy and clean conditions. Experimental results demon-
strate its effectiveness and efficiency, both as a standalone model and
as an additional rectified model. In the next steps, we will further in-
vestigate its potential in other speech generation tasks.
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