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ABSTRACT

Large margin fine-tuning (LMFT) is an effective strategy to improve
the speaker verification system’s performance and is widely used in
speaker verification challenge systems. Because the large margin
in the loss function could make the training task too difficult, peo-
ple usually use longer training segments to alleviate this problem in
LMFT. However, the LMFT model could have a duration mismatch
with the real scenario verification, where the verification speech may
be very short. In our experiments, we also find that LMFT fails in
short duration and other verification scenarios. To solve this prob-
lem, we propose the duration-based and similarity-based adaptive
large margin fine-tuning (ALMFT) strategy. To verify its effective-
ness, we constructed fixed, variable length, and asymmetric verifi-
cation trials based on VoxCeleb1. Experimental results demonstrate
that ALMFT algorithms are very effective and robust, which not only
achieve comparable improvement with LMFT in official VoxCeleb
evaluation trials but also overcome performance degradation prob-
lems in short-duration and asymmetric scenarios respectively.

Index Terms— speaker verification, large margin fine-tuning,
duration mismatch, asymmetric scenario

1. INTRODUCTION

In recent years, the development of deep learning made progress in
the field of automatic speaker verification (ASV). The neural net-
work based ASV model can be divided into three modules, the frame
level speaker feature extraction [1, 2, 3], the pooling layer for statis-
tics extraction [4, 5, 6], and the loss function for optimization [7, 8].

Based on the widely-used softmax function, researchers pro-
posed angular softmax [9, 10] to optimize the speaker embedding in
a hyper-sphere space. Further, the margin is added to minimize the
within-class distance and maximize the between-class distance. The
most popular margin-based loss is additive angular margin softmax
(AAM) [11, 12]. In theory, increasing the margin within a reason-
able range can make the speaker embedding more discriminative.
However, the commonly used training segment for ASV is short,
e.g. 2s, and a too-large margin could make the optimization task
very challenging. Prior work proposed the large margin fine-tuning
(LMFT) strategy [13], which is a secondary training stage for ASV
systems and uses longer segments to fit the larger margin. Such strat-
egy achieves great performance improvement on the VoxCeleb [14]
dataset and VoxSRC 2020 competition [13].
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The commonly used VoxCeleb1 dataset [15] contains utterances
of at least 3s, with an average length of 8s, which are the interview
video audios collected from YouTube. However, in real verification
scenarios, people may say very short phrases for verification and the
LMFT model may encounter duration mismatch with such a sce-
nario. Besides, our experiments also verify that the LMFT model
fails in short-duration speaker verification.

In most studies, margin is a fixed value. But it can also vary
dynamically. For example, Dyn-arcFace [16] implements dynamic
margin according to distance between the target class and all other
classes, ElasticFace [17] utilizes random margin drawn from a nor-
mal distribution in each training iteration, and AdaptiveFace [18]
allows margin to vary by class. In addition, DAM-Softmax [19] de-
signs a margin with a negatively correlated cosine similarity of the
training sample, inspiring us to rethink the similarity calculated in-
side the classifier inferred from training samples.

Based on LMFT’s drawbacks and inspired by the above works
using dynamic margin, we propose the adaptive large margin fine-
tuning (ALMFT) strategy from two perspectives, duration-based and
similarity-based. These viewpoints reflect the training difficulty of
the model for each training sample, and the penalty should be im-
posed adaptively corresponding to the training difficulty. We care-
fully design two algorithms to choose the optimal margin for training
samples, which require little modification of the initial network.

In experiments, we observe that ALMFT achieves comparable
improvement compared with LMFT on the official VoxCeleb1 eval-
uation set. Meanwhile, ALMFT addresses the performance degrada-
tion inherent in LMFT in short-time and asymmetric scenarios and
even improves the baseline system in these scenarios.

2. ANALYSIS OF LARGE MARGIN FINE-TUNING

2.1. Angular softmax with margin

The commonly used softmax classification loss is presented as
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where N is the number of training samples, C is the number of
speakers in the training set, xi is the speaker embedding of the i-
th sample, yi is the corresponding label index, w is the parameter of
the last fully connected layer and b is the bias.

After normalizing the weights, zeroing the biases and introduc-
ing margins, we get the margin-based softmax loss function formu-
lated in Eq.2, where s is a scaling factor, θj is the angle between wj

and xi, and the wT
j x+ b is rewritten as s · cos(θj) or s · f(θj).

The angle function Eq.3 summarizes the forms of margin-based
softmax loss. In the following sections, we only consider the AAM-
softmax case, i.e., the case where m1 = 1 and m3 = 0 [8].



LMargin S = − 1

N

N∑
i=1

log
exps·f(θyi )

exps·f(θyi ) +
∑C

j=1,j ̸=yi
exps·cos(θj)

(2)
f(θyi) = cos(m1θyi +m2)−m3 (3)

2.2. Large Margin fine-tuning

Margin plays a critical role in the ASV task, helping the network
to extract more discriminative speaker embeddings [8]. However,
simply enlarging the margin value dramatically increases training
difficulty and causes performance degradation. Large margin fine-
tuning (LMFT) strategy, proposed in VoxSRC 2020 [13] alleviates
this problem. For a network already trained to converge, which is
also considered as the baseline in our experiments, LMFT is a sec-
ondary training phase on top of this initial network to help create
more robust speaker embeddings. To stabilize the system at the
large margin setting, longer training utterances are applied to pro-
vide more speaker information. Meanwhile, the longer duration also
matches the VoxCeleb1 testing environment with an average of 8s
for utterances [20]. However, LMFT has some inherent drawbacks.
Since longer training segment is used in the fine-tuning stage, LMFT
is only effective in certain scenarios and is detrimental to duration-
mismatched scenarios.

To further investigate this phenomenon, we compare fine-tuned
systems with different margins and fine-tuning duration setups in
Figure 1. In order to better show the pros and cons of each system,
we calculate these systems’ relative Equal Error Rate (EER) change
compared with the baseline system. Besides, to simulate the evalua-
tion scenarios with different test durations, we sample sub-segments
with a specific duration from the original VoxCeleb evaluation set to
construct new evaluation trials based on Vox1-E. From the results in
Figure 1, we have three key observations.

-25%

-15%

-5%

5%

15%

25%

35%

1s 2s 3s 4s 5s 6s Full
Length

R
e

la
ti
v
e
 E

E
R

 c
h

a
n
g
e

 
(L

o
w

e
r 

is
 b

e
tt
e
r)

LMFT (margin=0.5,6s) margin=0.2,6s margin=0.2,1s margin=0.5,2s

Vox1-E data duration

Full Length

Fig. 1. Relative EER change of fine-tuned systems compared with
the baseline system. We sample sub-segments with a specific dura-
tion from the official Vox1-E trial for evaluation.

Firstly, We observe that LMFT improves significantly over the
pre-trained baseline model on the official VoxCeleb1 evaluation trial
but has about 34% degradation on the short-time scenario such as
1s. This duration matching is beneficial for some specific testing
data, yet this advantage could not transfer to other scenarios, such as
short-time scenarios, and can even lead to performance degradation.

Secondly, we fine-tune the baseline system with utterances of
lengths of 6s or 1s under a 0.2 margin, and we notice that training
with fixed-length speeches only focuses on certain types of data and
cannot get consistent improvement on more complex realistic sce-
narios. The system with 6s speeches (orange bars) improves signifi-
cantly in the long-time scenario but causes a performance reduction
in the short-time scenario. Similarly, fine-tuning with 1s data (grey
bars) makes progress around 1s, but no improvement or even worse

performance can be witnessed for test utterances over 3s. As a re-
sult, it is necessary to use dynamic and diverse lengths of speech to
match more scenarios.

Thirdly, the margin is important, and choosing a reasonable mar-
gin also matters. By comparing the orange and green bars, we find
that a higher margin helps the model extract stronger speaker em-
beddings. However, similar to previous studies [8, 12, 13], with 2s
training utterances, the blue model is not capable to handle the high
penalty by strengthening the margin to 0.5, and the improvement is
not obvious. This inspires us to choose a larger margin with a rea-
sonable judgment of the training difficulty it can receive.

In summary, considering the drawbacks of LMFT, we propose
a method enabling the system to perceive audio inputs of different
durations and to adjust the margin in accordance with data and its
corresponding training difficulty during the fine-tuning phase.

3. ADAPTIVE LARGE MARGIN FINE-TUNING

The proposed adaptive large margin fine-tuning (ALMFT) method
has two key points. On the one hand, to match more realistic test
scenarios, we randomly select multiple lengths of speech for training
to enrich the variety of training samples. On the other hand, to rea-
sonably choose a larger margin, we can infer the acceptable training
difficulty of the model from the data duration and cosine similarity.
We let the margin be adjusted accordingly.

3.1. Duration-based adaptive margin

A larger margin helps to learn discriminative embedding while it
increases the training difficulty. Meanwhile, longer training utter-
ances contain more speaker information and are easier to classify,
which can fit the larger margin and also adapt to the commonly used
long-time evaluation scenario [20, 13]. Therefore, we introduce a
dynamic function, allowing the margin to adapt to the training data
duration. Here, we use the linear transformation to portray the in-
cremental relation between margin and data duration shown in Eq.4.
By setting the range of margin and the range of utterance duration,
we can fit the line to get the values of A and B.

Margin = A× Duration +B (4)

3.2. Similarity-based adaptive margin

Psychological research proved that people should set challenging
goals, but it is necessary to consider task complexity to avoid be-
coming too overwhelming [21]. Neural networks function like an
imitation of the man brain [22], therefore, the margin in the loss cal-
culator, serving as the reflection of challenges, should also satisfy
the negative correlation with the training difficulty.

In the ASV system, the training difficulty can be reflected in two
ways. On the one hand, by using longer speech, more information
about the speaker is provided to reduce the difficulty of speaker
classification. On the other hand, the arc-cosine function in AAM-
softmax calculates the similarity between the current embedding
and the target center, which also measures the classification diffi-
culty [19]. A higher similarity indicates the capability of extracting
more robust embedding, so we should strengthen the margin to
increase the difficulty and vice versa.

To denote the positive correlation between margin and cosine
similarity, we use the exponential function shown in Eq.5. α and β
can be obtained by fitting this function with the margin range and
statistically derived training difficulty. Due to the fast growth rate of
the exponential function, the margin becomes extremely high when



cosine similarity is close to 1. To avoid this situation, we set a max-
imum margin γ to keep the margin in a reasonable range.

Margin = min(α exp(β × Similarity), γ) (5)

3.3. Adaptive fitted parameter
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Fig. 2. Adaptive fitting parameter mechanism

Previous works have found the optimal margin for specific train-
ing duration, e.g. margin 0.2 for AAM loss with 2s training seg-
ment [23] and 0.5 with 6s training segment [13]. We utilize these
setups as the benchmark to fit parameters in Eq.4 and Eq.5.

Based on the incremental relation between margin and duration
in two optimal setups, we fit Eq.4 and obtain the values of A and
B easily. However, to fit α and β in Eq.5, the data duration serves
as a bridge to find the correspondence between margin and cosine
similarity. As shown in Figure 2, we feed 2s or 6s segments into
the initial model and calculate the average cosine similarity between
embedding and target classification weight among all the segments.
The obtained average similarity will correspond to the same margin
as the input segment’s duration. We apply mathematical software
(such as Matlab) to fit the required function in parameters.

4. EXPERIMENTAL SETUP

4.1. Pre-trained baseline model

For all systems, We use the r-vector [2] as the backbone and train
on the development set of the VoxCeleb2 dataset [14]. In the pre-
trained baseline system, we apply data augmentation [24] and speed
perturbation [25]. During the training process, we train the baseline
system by randomly sampling 2s segments from utterances for 165
epochs. The AAM loss [11] is used for system optimization, where
the scale ratio and margin equal 32 and 0.2 respectively [8]. The
learning rate decreases exponentially from 0.1 to 0.00005. Cosine
distance scoring is applied for all experiments.

4.2. Fine-tuning configuration

4.2.1. Large margin fine-tuning configuration

Because fine-tuning is the secondary stage of training, we choose the
pre-trained baseline system as the initial model. We use the same
configure in [13] to achieve LMFT system. We prolong the train-
ing utterances from 2s to 6s and increase the margin of the AAM-
softmax from 0.2 to 0.5. We disable the speed perturbation and data
augmentation [25]. The learning rate decreases exponentially from
0.0001 to 2.5e-05 during the 10 epochs.

4.2.2. Adaptive margin fine-tuning configuration

For the duration-based and similarity-based adaptive margin fine-
tuning (D-ALMFT and S-ALMFT) strategies, the baseline system is
used for initiation. Training utterances are randomly chosen from
1s to 6s. To maintain consistency with the parameters of LMFT, the
margin range is also from 0.2 to 0.5. We do not utilize data augmen-
tation or speed perturbation. The maximum margin γ in S-ALMFT
is set to 0.7 to avoid unreasonable value. Other configurations are
the same as those of LMFT described in Section 4.2.1.

4.3. Data preparation

VoxCeleb dataset is a large-scale audio-visual speaker recognition
dataset extracted from videos in YouTube [15, 14]. In all experi-
ments, VoxCeleb2-development set [14] is utilized for training. In
addition to the official VoxCeleb1, we construct three other datasets
based on VoxCeleb1 for evaluation.

(1) Official VoxCeleb1 [15] dataset is an audio-visual large-scale
dataset, containing at least 3s and average 8s utterances.

(2) Fixed-length VoxCeleb1 dataset includes six subsets. Each
contains fixed duration utterances from 1s to 6s respectively to ana-
lyze system performances in different speech duration scenarios.

(3) Variable-length VoxCeleb1 dataset is designed to verify the
model’s ability for extracting embedding that is robust to the speech
duration. We let the duration of enroll and test utterances be chosen
randomly from 1s to 6s

(4) Asymmetric dataset reflects realistic scenarios. We use full-
length audios for enrollment but intercept 1s or 2s speeches for the
test. Because enrollment is only once, and users tend to be more
cooperative to record longer voices. However, convenience is of-
ten more important in real-world authentication, which requires the
authentication system to respond within a very short time.

5. RESULTS AND ANALYSIS

5.1. System performance on the official VoxCeleb dataset

To study the effect of fine-tuning, we conduct experiments with
LMFT and our proposed D-ALMFT and S-ALMFT strategies in
Table 1. Cosine distance scoring is applied and equal error rate
(EER) is used to evaluate the performance. We observe that both
D-ALMFT and S-ALMFT strategies help the baseline system gain
about 26.2%, 17.3% and 17.6% improvement in the official Vox-
Celeb1 O, E, and H trials, which is comparable with the LMFT
system and is practical for ASV models in challenges.

5.2. System performance on the fixed-length dataset

VoxCeleb is an audio-visual large-scale dataset, but it is not an ideal
evaluation dataset in real ASV scenarios for the following reasons.
First, the average speech length of VoxCeleb is 8s, while it is difficult
to encounter such long test data in real-life scenarios, such as smart
wakeup and identity confirmation. Second, enroll and test speeches
are often asymmetric in length. Test utterances are usually shorter
due to environment and time limitations. To verify in more real-
life scenarios, we regenerate three other datasets based on official
VoxCeleb1, described in Section 4.3 .

In order to clearly observe the system performance under differ-
ent durations, we construct the fixed-length dataset based on Vox-
Celeb1. The fixed-length dataset shows the system performance un-
der different durations. Unfortunately, as shown in Table 1, the sys-
tem with LMFT method causes 33% and 16% degradation on 1s and
2s scenarios respectively, although it succeeds in the official Vox-
Celeb1 dataset by taking advantage of data matching [20].

Similar to LMFT, ALMFT method boosts model performance
as the data duration becomes longer. The system benefits from the
duration matching and the enhanced intra-speaker compactness after
giving a higher margin for longer utterances. Meanwhile, ALMFT
avoids serious system degradation in short-time scenarios although
with a slight performance decline at 1s. Due to the training data
longer than 1s, it inevitably has an impact on the performance at 1s,
but other test environments are not influenced.



Table 1. System performance EER(%) comparison. LMFT: Traditional large margin fine-tuning; D-ALMFT: proposed Duration-based
adaptive large margin fine-tuning; S-ALMFT: proposed Similarity-based adaptive large margin fine-tuning.

Model Official Fixed-length Variable-length Asymmetric
O E H 1s 2s 3s 4s 5s 6s O E H O E H

Baseline 1.116 1.108 2.09 11.437 3.451 1.972 1.474 1.346 1.435 4.351 4.124 6.769 4.303 4.125 6.775
+LMFT 0.872 0.872 1.645 15.269 4.034 1.943 1.296 1.118 1.131 4.923 4.650 7.054 4.856 4.695 7.019
+D-ALMFT 0.824 0.917 1.723 12.415 3.489 1.816 1.287 1.155 1.176 4.306 4.075 6.524 4.142 3.967 6.340
+S-ALMFT 0.824 0.922 1.726 12.392 3.481 1.817 1.292 1.156 1.171 4.301 4.071 6.493 4.106 3.956 6.321

5.3. System performance on the variable-length dataset

It is not comprehensive to measure the performance of real-life ASV
applications using fixed-length dataset. Therefore, we design the
variable-length dataset to investigate the robustness of the model for
data with different durations. Table 1 demonstrates the limitation of
LMFT method in the variable-length scenario with a nearly 12% per-
formance degradation. But both D-ALMFT and S-ALMFT methods
overcome this problem and even make slight progress.
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Fig. 3. Average score or relative average score change between em-
beddings extracted from utterances with the same speaker label and
different durations.

If the ASV system is robust for the duration, the embedding ex-
tracted from short segments is similar to that extracted from long
utterances. Figure 3 (a) compares the average score of speaker em-
bedding extracted from utterances of different lengths based on tar-
get pairs (enroll and test utterances are from the same speaker) of
variable-length dataset trial E. Darker color means less similarity and
a weak ability to extract embedding robust to duration. The score
decreases when either enroll utterance or test utterance duration de-
clines, which can be reflected in the diagonal style color change.
However, all scores are less than 0.61, indicating that there is still
much room for improvement.

Figure 3 (b) presents the relative score change between the base-
line system and LMFT or S-ALMFT system. The red upper left cor-
ner of the LMFT system represents the worse short-time embedding
extraction ability. The green part of the S-ALMFT system shows an
improvement in the variable-length dataset. This further indicates
that our models address the inherent limitations of LMFT, and ob-
tain performance gains in extracting embeddings robust to duration.

5.4. System performance on the asymmetric dataset

In real life, longer utterances are required in the enrollment process
and speakers tend to speak shorter words to do verification for con-
venience. The information asymmetry provided by enroll and test
utterances is challenging for ASV tasks as shown in Section 5.3. To

simulate asymmetric scenario, we form the asymmetric dataset for
evaluation described in Section 4.3.

Similar to the other datasets, Table 1 shows an unsatisfied per-
formance of LMFT, with a 13.8% reduction in trial E. However,
ALMFT methods achieve up to 4.5%, 4.1% and 6.7% performance
improvement over baseline system on O,E and H trials respectively.
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Fig. 4. Target and non-target speaker score distribution of systems
on asymmetric dataset trial H.

Figure 4 compares the target pairs and non-target pairs score
distribution and their corresponding standard deviation of different
models. Figure 4 (a) represents the difference between the average
score of target pairs and non-target pairs, which also indicates the
inter-speaker distance. We notice that D-ALMFT increases this dis-
tance, while LMFT and S-ALMFT lead to a slight reduction. Figure
4 (b) presents the standard deviation of target pairs, indicating the
intra-speaker compactness, which is enhanced by both D-ALMFT
and S-ALMFT and is decreased by LMFT. Figure 4 (c) compares
the standard deviation of non-target pairs and all three algorithms
improve the ability to identify non-target speakers. Although S-
ALMFT does not further enlarge inter-speaker separability, Table
1 shows that the system still outperforms the baseline system thanks
to the reduced intra-speaker variance.

6. CONCLUSION

Focusing on the drawbacks of the conventional LMFT method, we
emphasized the necessity of collaborative variation of training ut-
terances and the training penalty. In this paper, we developed the
adaptive LMFT methods that adjusted the margin according to ut-
terance duration and similarity for each sample and its class center.
In addition to the official VoxCeleb1, we constructed fixed-length,
variable-length, and asymmetric datasets based on VoxCeleb1 to bet-
ter simulate real-life scenarios. Finally, our newly proposed ALMFT
gained comparable performance on official VoxCeleb1 compared
with conventional LMFT, while without any performance degrada-
tion or even with slight improvements on other scenarios.
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